The Smalltalk Report

The International Newsletter for Smalltalk Programmers

October 1992 Volume 2 Number 2

n exploratory design is by no means complete. It is a rough con-

VISIBILITY:
]
those details: how to turn an imprecise list of collaborations into a more rigorous
a relatively straightforward

MAKING THE design description and finally into Smalltalk code
process that can be ackled systematically. Following a few general principles

during this translation process results in classes that are more reusable and easier

NECESSARY to change or enhance.
Turning an architectural drawing into a detailed set of blueprints shares a few

similarities with the sofiware construction process. When developing detailed
CONNECTIONS blueprints, an architect translates a rough architectural drawing into a specific list
of materials to be used and a fairly explicit map of how those materials should be

composed in the fnished product. This still leaves a lot of latitude for decision-

ceptual sketch of the key objects of a design, what their roles are,
and a partial list of their responsibilities and collaborations. A lot
of detail needs to be added before this relatively high-level design

description can be turned into code. I want to focus on just one of

making and creativity during construction—just ask anyone who has had a house
By Rebecca Wirfs-Brock built. You don’t start construction expecting a barn and end up with a skyscraper!
The same principles apply to constructing soliware.

. cfore ing ject-ori sign description i a detailed s f

Contents: ~Bd0rc turnu.u__, an object orlenle-d design description 1.nt0 a detailed se.t of
sofiware blueprints, you must consider the tools and environment you will use
during construction. Mapping an object-oriented design into Smalltalk code re-

Features quires matching up object-oriented design concepts with the appropriate
I Object visibility: Making the ' Smalltalk language and programming constructs. It's essential when constructing
necessary connections a solution to have a good understanding of pre-existing components. Archilects
by Rebecca Wirfs-Brock don’t invent new kinds ot fasteners or building material for each construction
Columns ; project. Similarly, proficient Smalltalk programmers know their Smalltalk class li-
5 Product Review: Object Tech- braries. They don’t construct a new class when a readily available one will do the
nology’s ENVY Developer job, even if it isn’t perfect.
by Jan Steinman and Before systematically adding more rigor Lo our collaborations, let's examine
Barbara Yates our Smalltalk construction environment. How many different ways are there in
12 GUIs: Separating the GUI from | Smalltalk [or one object to have visibilily ot another? Objects can't collaborate
the application, Part 2 unless they can send each other messages. The client, or sender of a message, first
by Greg Hendley and Eric Smith needs to have visibility of the server or recciver of the message. Message sending
I5 Smadiitalk idioms: Collection idiomsi is all done within the context of a method. Anyone with a modest amount of
by Kent Beck 5 Smalltalk programming experience should be able o come up with most of these
|9 Getting real: The dangers of ' techniques fairly quickly. For new Smalltalkers this is a good exercise in funda-
storing objects _ mental implementation constructs. You will use these constructs (and other
by Juanita Ewing techniques) when you translate designs into executable program code.
2| The best of comp lang.smalltalk | Here are some ways an object may be visible within a method:
Some Smalltalk stuff ; = an object alwavs has visibility o itsell (sending messages to self is fundamental
by Alan Knight to Smalltalk programming)

continued on page -




EDITORS’
CORNER

John Pugh Paul White

ince many of you will be reading this while attending OOPSLA’92 in Vancouver, we
thought it appropriate to take stock of the impact OOPSLA has had on the growth of
Smalltalk and vice versa. As we mentioned in our editorial last year following OOPSLA,
we were struck by Smalltalk’s “emergence” as an industrial-strength vehicle for large-scale
object-oriented system development. Looking back, it’s probably fair to say that was a
new role for most of us. For the first time, it seemed we did not have to constantly defend
the decision to use Smalltalk. For the first time, we regularly heard the question, Why
aren’t you using Smalltalk?

Both of the major Smalltalk vendors have major plans for OOPSLA. Digitalk has re-
cently released the OS/2 version of PARTS Workbench, their long-awaited parts assembly
and reuse tool set technology. Will this product lead us closer to the promised land of ap-
plication construction from prefabricated software parts? ParcPlace will be showing Vi-
sual/Works, their new application development environment for client-server, GUI-based
applications. With a growing number of third-party vendors also showing Smalltalk-re-
lated products, the OOPSLA exhibits floor will be an active place for Smalltalkers. Watch
for reviews of many of these products in upcoming issues of the Reporr.

Once again, we feature Rebecca Wirfs-Brock’s design column in the Reporr. This
month, Rebecca describes the different ways one object can be visible to another and sug-
gests guidelines for managing this visibility. In the long run, she suggests, it is vital for
“teams to develop and stick to a style guide that addresses when and how to use partir _.
Smalltalk constructs.” Having faced these issues many times before on projects, we can
only add that we agree wholeheartedly.

Also in this issue, Kent Beck introduces us to a number of collection idioms, illustrat-
ing how best to use Smalltalk’s collection class library, which has traditionally been one of
Smalltalk’s best-selling features. Greg Hendley and Eric Smith return to their pro-
posal for a three-layered architecture for building GUIs using a more complex example to
highlight many of the pitfalls normally encountered during GUI development. Alan
Knight rolls up his sleeves in this month’s Best of comp.lang.smalltalk column and covers
a number of very specific and technical questions relating to the implementation of
Smalltalk. As he points out, many of the discussions he covers this month offer “only an
understanding of the source of the problems” rather than solutions. Finally, Jan Steinman
and Barbara Yates review ENVY Developer by Object Technology International. In our
ongoing coverage of team programming tools, Jan and Barbara describe ENVY’s philoso-
phy and put ENVY’s features into perspective with respect to the many other tools cur-
rently on the market.

If you are attending OOPSLA, why not take a few minutes to drop by and talk with us?
It is always useful to find out what kind of things you’re interested in and how you’re us-
ing Smalltalk. See you there! '

The Smalltalk Report (ISSN# 1056-7976) is published 9 times a year, every month except for the Mar/Apr, July/Aug, and Nov/Dec combined issues. Pub-
lished by SIGS Publications Inc., 588 Broadway, New York, NY 10012 (212)274-0640. € Capyright 1992 by 51GS Publications, Inc. Al rights reserved. Re-
production of this malerial by electronic transmission, Xerox or any other method will be treated as a willful violation of the U5 Copyright Law and is flatly
prohibited. Material may be reproduced with express permiasion from the publishers. Mailed First Class. Subscription rates 1 year. (9 issues) domestic, 565,
Foreign and Canada, $90, Single copy price, $8.00. POSTMASTER: Send address changes and subscription orders to: THE SMALLTALK REPORT, Subscriber
Services, Dept. SML, P.O. Box 3000, Denville, NJ 07834.

Submit articles to the Editors at Smalltalk Report, 91 Second Avenue, Ottawa, Ontario K1S 2H4, Canada.

Editors
John Pugh and Paul White
Carleton University & The Object People

SIGS PuBLICATIONS

Advisory Board

Tom Atwood, Object Design

Grady Booch, Ratlonal

George Bosworth, Digiralk

Brad Cox, informarion Age Consutting

Chuck Duff, Symantac

Adele Goldberg, ParcPlace Systems

Tom Love, OrgWare

Bertrand Meyer, iSE

Meilir Page-Jones, Wayland Systems

Sesha Pratap, Centerline Safeware

P. Michael Seashols, Versant Object Technology
Bjarne Scroustrup, ATAT Bell Labs

Dave Thomas, Object Technolegy Intemnarional

THE SMALLTALK REPORT
Editorial Board

Jim Anderson, Digitalic

Adele Goldberg, ParcPlace Systems

Reed Phiflips, Knowledge Systems Corp.
Mike Taylor, Dighatk

Dave Thomas, Object Technelogy Imemational

Columnists

Kent Beck, First Class Software

Juanica Ewing, Digicalic

Greg Hendley, Knowledge Systems Corp.

Ed Klimas, Linea Engineering Inc.

Alan Knight, Carleton University

Suzanne Skublics, Object Technology'Internatonal
Eric Smith, Knowledge Systems Corp.

Rebecca Wirfs-Brock, Digirik

SIGS Publications Group, Inc.
Richard P. Frledman

Founder & Group Publisher

Art/Production

Kristina Joukhadar, Managing Edicor

Susan Culligan, Pllgrim Road, Ltd., Creative Direction
Karen Tongish, Producdon Editor

Jennifer Englander, Art/Prod. Coordinator
Circulation

Diane Badway, Cirasation Business Manager

John Schrelber, Circulation Assistanc

Vicki Monck, Circuladon Assistant
Marketing/Advertising

Diane Morandie, Advertising Mgr—East Coast/Canada
Holly Meintzer, Advertising Mgr—West Coasu/Europe
Helen Newling, Recruiomen: Sales

Sarzh Hamilton, Pr Manager—Publicacs
Lorna Lyle, Promations Manager—Conferences
Caren Polner, Promotions Graphic Artist
Administration

Ossama Tomoum, Business Manager

David Charterpaul, Accounting

Claire Johnston, Corference Marager

Cindy Baird, Conference Technical Manager

Amy Stewart, Projects Manager

Margot Patrick, Administratla Assistant

I‘hrglnrltall.l“lon:k

WsiGs

FUBLICATIONS
Publishers of JOURNAL oF OBIECT-ORIENTED PROGRAMMING,
Ongct MAGAZIE, HOTUNE ON ORECT-ORENTED TECHNOLOGY,
C++ REPOAT, THE SHALLTALK RERORT, THE INTERNATIONAY
OOP DIRECTORY, and THE X JOURNAL

2

THE SMALLTALK REPORT



10 Years Ago,
en OTI Suggested
at Object-Oriented

echnology Would
Revolutionize
The Software Industry,
People Called Us

r

Now, They Simply Call Us.

For over 10 years, OTI has been on the
leading edge of object-oriented software
engineering. And today, as more and more
companies adopt this exciting, new
technology, OTI remains the leader in
providing industrial and commercial
object-oriented solutions.

Partners in

Object-Oriented Development

OTTI’s unique technology alliance program
provides a means of accelerating product
development and introducing new software
technology. OTI’s technology is being used
in products ranging from pen computers to
real-time systems. Through these alliances,
we've earned a solid reputation for developing
high-quality, reliable software — on-time,
within budget and to demanding product
specifications. This success is attributed to

OTI’s ENVY®Developer - the first multi-user
development environment for object-oriented
engineering.

OTI’'s ENVY/Developer - Product
Development Tools For Smalltalk

With ENVY/Developer, large and small
software engineering teams work within an
interactive, shared programming environment.
Inside this environment, team members share
common development tools, common software
components and common source code — that
means faster cycle times, increased productivity,
virtually no duplicated code, and no wasted
effort.

Applications are created efficiently and
effectively, from beginning to end. Using
ENVY/Developer, the team passes the
application through each phase of the software

manufacturing lifecycle — conceptualizing,
prototyping, manufacturing, testing, release
and maintenance — without ever leaving the
environment. ENVY/Developer also tracks
this process by providing complete software
version control and multi-platform
configuration management.

Interested?

If your organization is interested in joint
research and development or you would like
more information on ENVY/Developer and
object-oriented programming environments,
call us today.

Object Technology
International Inc.
Engineering Ideas
Into Products

Canada Telephone: 613-820-1200 e Fax; 613-820-1202 » E-mail: info@oti.on.ca USA Telephone: 602-222-9519 e Fax: 602-222-8503
ENVY is a registered trademark of Object Technology International Inc.



OBJECT VISIBILITY continued from page 1

« those objects passed in as arguments

an object’s class (by sending the message self class)

values of instance variables—objects that are part of the ob-
ject’s encapsulated state

any object returned as a result of sending a message to an
object already visible

objects assigned to temporaries

any class whose name is known

* you can create an object whenever you need it (assuming
you know the name of its class)

an object that is a value of a global variable (for example,
Smalltalk)

class variables of the object’s class or any of its superclasses

variables in pools specified by the object’s class

constant objects known to the language (e.g., nil, true, and
false)

literals (including integers and floating point objects,
strings, literal arrays, a literal block)

Enough! I asked my colleagues for additions and got several
that were far too obscure to include in this column. Let’s orga-
nize these objects into four categories:

1. Globals of varying scope. We can include globals, pools and
pool variables, and even class variables in this category.
These global spaces typically contain abjects visible to many
other objects. If you can name an object in one of these
global spaces, it’s yours for the accessing,

2. Objects that dynamically become known within the context of
a method. These include objects passed in as arguments and
any object returned from a message. An object that be-
comes visible in this way can always be retained for later
reference or discarded as needed.

3. Objects that are part of an object’s encapsulated state, i.e., in-
stance variables.

4. Basic programming constructs. It's difficult to write any
significant code without using nil, true, or false. Literals also
fall into this category and are just as ubiquitous.

EXAMINING THE EXPLORATORY DESIGN

Most collaborations are recorded between objects at the same
or next layer of detail. If a designer has figured out the details
of an algorithm, quite a number of collaborators at very differ-
ent conceptual levels may be listed. This is an exception rather
than the rule; it is more common to have a vague idea that
some kind of collaborative effort is required. Most often col-
laborators are a list of objects that will become known dynami-
cally, not those that are permanently visible.

Lists of collaborators certainly aren’t exhaustive or very pre-
cise. But this doesn’t mean we have a bad design, just a prelim-
inary one. During the early design stages, we determine when
to use the services of some key collaborators; we don’t yet need
to determine precisely how we will use them, First, we develop
a model of what an object should do along with a vague idea of
some of its key collaborators. Next, we need to try out a num-
ber of alternatives.

To add precision, we need to determine whether an on-
going dialog will be required or whether a single message
will do. We need to construct a model of how each respon-
sibility will be accomplished. This requires experimenta-
tion, since there’s no one right way to decompose a solu-
tion. However, when working out these details, there are a
number of principles worth following to make your imple-
mentation cleaner.

LIMIT VISIBILITY

One guiding principle is to make objects visible to each other
on a need-to-know basis. An even stronger statement: Don’t
retain visibility of any object if you absolutely don’t have to. In
general, design objects so they know as few other objects for as
short a time as possible. If an object only needs to know about
another for the duration of a method, pass it in as an argument
and let the client supply necessary information. Carrying this
to extremes, however, will result in objects with poorly de-
signed interfaces.

SIMPLIFY COLLABORATION SEQUENCES

Complex message protocols that have lots of arguments or re-
quire exacting sequences of messages between client and
server make objects difficult to use and understand. A balance
must be achieved between exposing too much complexity and
giving enough controls to the client. Simple interfaces are
worth striving for.

For example, I prefer to drive a car with a manual trans-
mission because of the extra control I have, while my mother
has driven an automatic car for years. She switched from
manual when automatic transmissions became popular be-
cause she preferred the simplicity. It certainly is much easier
to accelerate a car by sending the single message myCar acceler-
ate. I go through this sequence whenever I need to shift gears
before accelerating:

myCar depressClutch

myCar shiftGear: a GearValue
myCar releaseClutch

myCar accelerate.

Most people prefer a simpler interface, provided the neces-

- sary services are offered. Too many software engineers offer a

manual transmission when their clients prefer the simpler
driving method.

continued on page 11

4

THE SMALLTALK REPORT



RODUCT REVIEW

Object Technology’s

ENVY Developer

THE PROBLEM

Since the mid-1970s Smalltalk has been the development envi-
ronment by which all others are measured. The simple, rapid
hypertext-like browsing of code combined with incremental
compilation raise programming expectations to the level of
instant gratification.

Smalltalk gained a reputation as a toy, not because it lacked
power or expressiveness, but because few large systems were
written in it. Although it was certainly possible to do big pro-
jects in Smalltalk (Smalltalk itself being the best example),
most of its work reached a certain critical mass then stopped—
roughly at the limit of what one person could manage. The ul-
timate individual software development environment was just
that: an individual environment.

A big part of Smalltalk’s instant gratification is the way it
manages change. Each time you save a method, its source code
is recorded in a file and can be retrieved if necessary. This works
fine for individual developers, but is unmanageable for teams.

At Tektronix Laboratories we realized that the lack of team
facilities was holding Smalltalk back. Tek wanted to reap the
object-oriented benefits of Smalltalk on larger projects, so we
developed different team programming environments for use
within the company. These “groupware” environments fell
into two general categories: those that maintained the basic
Smalltalk “what you saved is what you get” philosophy, and
those that followed the C/UNIX “check-in, check-out” philos-
ophy. Beyond this philosophical split, they all attempted to ad-
dress a common set of basic groupware needs.

NEEDS

We've studied and worked on the groupware problem at Tek-
tronix and as consultants. Through interviews with users and
their managers, literature research, and personal experience
implementing and using many groupware tools, we came up
with a basic set of requirements for Smalltalk team program-
ming, roughly prioritized by importance:

« Integration. Groupware must support the combining of
code received from different developers, which is primarily a
function of detecting conflicts and managing dependencies.

+ Code sharing and concurrency control. A developer must
be able to work on a code module without undue concern
that other developers are also modifying the same module.

Jan Steinman and Barbara Yates

* Revision history. Different versions of code need to be
maintained so that if new versions are found to have prob-
lems, old ones can be easily retrieved.

» Configuration management. Different combinations of
code modules need to be assemblable; previous versions of
configurations are necessary for regression testing.

* Documentation. In addition to standard Smalltalk method
and class comments, the new components necessary to
groupware require documentation support.

* Branching and merging. It is sometimes necessary to di-
verge from a single development path; then the two paths
usually must be brought back together.

Aside from these basic needs, a number of specialized needs
are often provided by groupware environments, including per-
formance monitoring and tuning tools, object storage mecha-
nisms, and facilities for generating link libraries. We'll examine
how Object Technology International’s (OTI) ENVY/Devel-
oper, referred to here simply as “Envy,” meets these needs.

ENVY PHILOSOPHY
It is apparent that Envy was designed, and not simply cobbled
together.

Envy adheres fairly well to the philosophy that “few
concepts, rigorously applied” are better than special cases
for everything. Although it has a complicated user interface,
and does take some learning, most users find it predictable
and easy to understand once they have absorbed the central
concepts,

Envy maintains the original “what you saved is what you
get” paradigm, rather than succumbing to the easier-to-imple-
ment “check-in, check-out” pattern, and uses the Smalltalk
method as the smallest unit of code sharing. This means that
team members can instantly view each other’s work, fostering
communication and avoiding needless branching.

Envy is conservatively designed to avoid accidents. It uses
error avoidance rather than error detection. If an operation
does not make sense in the current state, its menu selection is
disabled. Sometimes this can be frustrating, but we're con-
vinced it is much better than picking up the pieces after inad-
vertently selecting a “you asked for it, you got it” operation. As
a corollary to error avoidance, Envy uses multiple browsers to

OCTOBER 1992

5



H PRODUCT REVIEW

let you examine the present state of the system rather than rely
on multiple reports to tell you what happened after a problem.

Large-scale design is fostered by partitioning the problem
into functional units. In fact, Envy’s base image comes pre-
partitioned into functional units, making it easier, for instance,
to substitute a completely different user interface.

Class ownership has been debated in this and other publica-
tions. Envy is subtly different. It insists upon class definition
ownership: Any number of developers can provide methods
that extend a class, but only one developer is allowed to change
a class’s structure. Other groupware systems eschewing class
ownership can result in many conflicting definitions for a class,
which is deadly to large projects!

Finally, Envy obeys Einstein’s dictate that “everything
should be made as simple as possible, but no simpler.” Where
it makes sense to override a concept with a special case, Envy
does so.

ENVY CONCEPTS
Envy works from these basic concepts:

= All source code resides in a shared repository.

» There is a hierarchy of software components that have con-
tainer relationships to each other.

» Loading and unloading a component is atomic.

* Software components progress through stages, from edition
to version to release.

* Work in progress is carried out in mutable editions of
components.

« Components become immutable when declared versions.

* Users are associated with components in specific roles,
which may or may not be enforced.

Shared repository

All source code resides in a shared repository, which accepts
changes and makes them immediately shareable. Instead of the
typical sources and changes files, images are connected to a
shared network repository. As soon as a change to source code
is saved, the new code is appended to the repository. Since all
the team members are connected to the same repository, code

Npplication Edilions

- Application Edilions I:Efﬁnaﬂ & Extended ! fraraq&lslles
BlockConlex 1.2 2 o
ComplledCode 1.0

edlions
et ——Jan-ConlextMods 1.1
edion catlon Mansger for: Borbars Yales L.l

Defaull: Scraich-Jan Defined & Exdanded | Pr

ara-Test2(9 Augusi 1992 5:1|=
ompllalion R1.20
FilsSystem R1.20
Graphics R).20
Kemsl| R1.202...

¥
mee
goas
defedt |
wppicaton

Group Members

Jan-BackPolnterBacors 1.0

B

Jan-Contexiods 1.1

Jan-PrinttScant 1.1 Bamry Oglesby

Jan-StringSelector (partial) 1.10, Ben McGlll
Tools A1.20a... P‘ »Jan Steinman L

appicanon owrer |

Figure |: Application manager details, and history of an Application.

changes are immediately accessible to other members of the
team, who can view or load the new code into their image as
desired. Both the source strings and the compiled bytecodes
are stored in the repository; loading compiled code from the
repository is five to ten times faster than file-in.

Hierarchy of software components

There is a hierarchy of software components that have con-
tainer relationships to each other. These components are
methods, classes, subapplications, applications, and configura-
tion maps. The smallest component is the method, which is al-
ways a part of a class or class extension. Methods have version
history, as do all other components.

Classes differ from class extensions in that classes include the
class definition and class comment, while class extensions in-
clude only methods. Classes and class extensions are contained
by applications or subapplications. As mentioned earlier, class
extensions provide for multiple owners of bits and pieces of a
class. We use the term class to mean either class or class exten-
sion, unless a distinction is needed.

An application is a collection of classes that together serve a
useful purpose. Applications declare prerequisites, which are
other applications required to be present so they can function.
Loading an application loads its contained classes and their
contained methods (Figure 1).

Applications are actual Smalltalk classes and, as such, they
can implement behavior. For example, when an application is
loaded into an image, it is sent the message loaded. The devel-
oper puts into the loaded method any needed initializations
that should occur when the classes in the application are
loaded, such as initializing pool dictionaries. Another behavior
of applications is that they can respond to some standard sys-
temn events, such as image start up and shut down, by imple-
menting the methods startUp and shutDown. Objectworks
Smalltalk has a similar function via dependents, but since it is
implemented using a dictionary, the order of events is nonde-
terministic. In Envy, system event messages are sent in prereq-
uisite order, so applications can respond to the events in a pre-
dictable sequence.

Subapplications are applications with some restrictions
placed on them. They are always contained in and loaded as
part of an application; they cannot be loaded by themselves.
Subapplications have two typical uses: to isolate platform de-
pendencies and to organize classes within a large application.
When an application is loaded, the loading of each subapplica-
tion is controlled by a boolean configuration expression; that is
how a platform-specific subapplication is loaded appropriately.
We use the term application to mean either application or sub-
application, unless stated otherwise.

Configuration maps are named collections of applications.
Most teams will use a configuration map to periodically rebuild
their image, bringing in the latest integrated and tested versions
of all their applications. Another use of configuration maps is a
“one button” way to load an application and all of its prerequi-
sites. In a large organization that promotes firm-wide compo-

THE SMALLTALK REPORT



S-171-

Now available!
silence 2.0
for Windows
and PM

O

‘dlgommo solutions

IN00 wsl el o cawie
a \‘HNL Uf V\‘\] mma

0O el S0 camier nade Navh dmanes
Duia orders add & PST

l Unil 6, 387 Spadina Avenue, Toronto, Onlario, Canada, M5T 2G6 Phone: (416) 351-8833 Fax: (416) 408-2850 (umpuServe 75430,400
Shiaping il hando ‘

‘mhuum all DGST silence i

nent reuse, configuration maps are used to load all the firm-
specific versions of base applications, such as those containing
Object, String, etc. Other configuration maps are centrally man-
aged to load the latest versions of the firm’s reusable compo-
nents. Each project team may then have its own configuration
map to load its applications on top of the firm’s customized
base, plus whatever reusable components the team needs.

Atomic loads

Loading and unloading a component is atomnic. Envy performs
“loadability” tests before beginning the load of a component
and notifies you of the first error it finds (if any). The image is
never left in an inconsistent state—loading either succeeds
completely or fails completely. This is especially important in
big components, subapplications and larger.

A totally foreign concept to Smalltalk users is that of un-
loading. Any component that has been loaded can be un-
loaded. Until Envy, a developer typically unloaded unwanted
code by ditching the image and file in everything except the
unloaded code!

Component stages

Software components progress through stages, from edition to
version to release. Work in progress is carried out in mutable
editions of components. Declaring an edition to be a version
disables changes. A version is released to its containing compo-
nent. All components make one or more passes through a
change cycle between “first code” and completion. Any new
component is an edition when it is created. Editions can be
changed and are signified in the user interface with a times-
tamp next to the component name. The developer works on
the component until it has reached a stage that should be

alutians

-e-n-c-e

Multi-user source code control

and versioning system
for Smalltalk /V

NEW! tode managed on a dient-server model »
NEW! automelic buckground updaling
NEW! linked sub-projed support
NEW! UFO persisienl objec foolkil
NEW! Avlomalic reparl gencralion
nulomalic change docwmenling
ship compiled code withoul source
packoge ond lock releases
chonge log browser and restorer

Starting from

$149.95

source code incuded

MRSTERCARD

Fihe Ml drienca
Smalltalk /Y i o e

“frozen” (especially if it’s working and the developer wants to
make some changes that could break it!). The developer then
makes the component a version.

Versions are identified by a label next to the component
name, instead of the timestamp that denotes editions. Envy sug-
gests version names, but the developer can specify an arbitrary
string, such as “for testing 1.0.” Once a component has been ver-
sioned, it and its label are frozen and cannot be changed. There-
fore, before a component can be versioned, all its parts (and all
their parts, recursively) must have been versioned.

If developers wish to make changes to a version, they create
a new edition of the component. If those changes destroy the
component beyond all recognition, or if the developer simply
wants to do regression testing, the old, unchangeable versions
can be reloaded easily.

At some point, the developers decide it is time to foist
their creation on their peers. If they own the component,
they can release it to its containing component, at which
point those who load the containing component get the
new part.

To avoid unnecessary interference with the traditional
Smalltalk programming style (as well as interference among
teamn members), special rules apply to some components’ pro-
gression through the change cycle:

* Methods are always editions and, if currently loaded, are
implicitly released to their containing class.

* Changing a method in a class version automatically creates
a new class edition,

* Classes must be versioned to be released to their containing
application or subapplication.

These exceptions allow you to use Envy transparently for at

OCTOBER 1992

7



W PRODUCT REVIEW

least 95% of what a Smalltalk developer normally does, while
keeping your “work in progress” from being accidentally
propagated.

User roles

Envy users fill roles with respect to software components, own-
ers, and developers; flexible access protection may restrict the
roles an individual user may fill. The creator of any component
automatically has the most authority. This user is called the
owner or manager of the component, and can reassign this role
to another user. The roles exist for one version and are carried
over into new editions until they are reassigned. We use the term
owner to mean either owner or manager, unless otherwise stated.

Any number of developers may be assigned to a class. These
developers make changes to the class in their own edition,
which they alone can version. The class owner can then release
the class to its containing application.

Flexible permissions are associated with an application. Un-
less the owner of an application explicitly changes it, anyone has
permission to load applications, make new editions of classes,
and view source code. This default allows development of a class
to be a collaborative effort. If desired, application owners can re-
strict these operations to either themselves or the assigned devel-
opers. Private methods can be controlled separately from public
methods, enforcing the “contract” interfaces between teams.

Owners of applications and configurations are the only
people who may version them. They also have other responsi-
bilities, such as determining the prerequisites for an applica-
tion or creating new editions. In the simplest case, common in
many organizations, one person owns all the classes and man-
ages the application.

ENVY TOOLS

Envy has a variety of browsers for different purposes. Usually
the developer will use the Application Manager and one of the
development browsers; the choice of browser depends on their
preferred view of the “world” of their image. Many operations
are available in more than one browser, so the developer is not
forced to switch browsers to perform common tasks.

The development browsers consist of two views of the im-
age world: class-centered or application-centered. The Classes
Browser arranges all classes in inheritance order and has a sec-
ond pane that shows which applications define or extend the
class, Italics indicate prototols that are not part of the selected
application or applications. Many list panes throughout Envy
allow multiple selection—doing this in the protocols pane
shows the union of their lists in the methods pane. Also avail-
able is a Class Browser for browsing a single class.

The Applications Browser (and the single application Ap-
plication Browser) presents the alternate, application-centered
view. Selecting an application shows a list of all the classes it
defines and extends, plus a toggle option to show all the pre-
requisite classes.

Some prefer the Classes Browser and others the Applications
Browser. Smalltalk-80 users may find applications somewhat

Object edilions in Kernel
~ 1y

= clsses and meltods thal
differin the dwo edltions

rerova from list

flle out changes
file oul allematives

diferences am Miptied
yai

|» puhic ] [» next ditference
7
“The default behavior I to creale a NopH jSubdassss can override this message |~

appropriate message and fo allow | n

Object messageMatUnderstoodSignal
raiseRequestith: aMessage

Object messageNotUnder;

ralseRequestWith givie R R T S LR

13 August 1982 12:45:53 Jp source > comment]> notes

can this r bl
B
| 43 October 1981 s:08:17 pry

Figure 2: History of Object, showing differences berween two editions.

analogous to class categories and therefore prefer the Applica-
tions Browser. Smalltalk/V users are often more at home with the
alphabetical/hierarchical view presented by the Classes Browser.

The Application Manager allows manipulation of the devel-
opment stage of applications and classes. This browser lists all
of the applications loaded in the image, with subapplications
indented according to their nesting level. With one application
selected, the other panes list the defined and extended classes,
the application’s prerequisites, and the application owner and
assigned developers. This browser is used for organization and
management beyond normal code development, such as load-
ing and unloading applications or classes, versioning applica-
tions and classes, releasing classes, and determining the com-
position of applications.

Recreating an image in Envy is easy. Using the Configuration
Maps Browser, simply load one or more configuration maps into
the image supplied by OTI. Generally, teams define configura-
tion maps that list the various applications comprising their “de-
liverable.” All of the base image applications in the repository
supplied by OTI are already listed in the supplied configuration
map called Envy/Manager. Developers can examine existing
maps in the repository, create new maps, and edit the contents of
map editions. When all the applications in a configuration map
are versioned and the map is loaded, a configuration map owner
can version it. The map owner does not have to experiment with
the load order of the applications in a map—the applications’
prerequisites determine the order and the entire load is atomic.

A prime feature of Envy is the collection of tools for version
history and comparison. In all the development browsers, it is
possible to open a browser on all editions of a selected comp-
onent. These history browsers list, in reverse chronological or-
der, all the editions and versions of the component. From the
editions list it is possible to load a selected edition or select any
two editions and browse their differences in a Changes Browser.
This browser displays differences by highlighting lines and al-
lows loading of the alternate edition if desired (Figure 2).

Sometimes there will be concurrent development of the
same component by two (or more) developers. This happens
at the class level because, unlike “check-in, check-out” systems,

8

THE SMALLTALK REPORT



there is no exclusive locking of a class to prevent others from
making needed changes. This might occur at the application
level when a production version of an application is undergo-
ing maintenance while other developers are working on “the
next release.” The same Changes Browsers that show you the
differences between two editions also allow you to merge two
editions by installing one or the other version of a method or
definition, or by copying, pasting, and compiling a new devel-
oper-merged edition of a method

There are two buttons in development browsers worthy of
special mention. The public/private toggle displays public or
private classes (in the classes pane), or public or private meth-
ods (in the methods pane). Private classes should not be refer-
enced and cannot be subclassed outside of their applications.
Subclassing of private classes is strictly enforced; referencing
results in a warning. Private methods should not be called out-
side of their inheritance hierarchy. The application owner can
deny non-group members the ability to read the private code.

If you don't like the tools provided, keep in mind that Envy
is an open system. Certain low-level code that accesses the
database is hidden, not so much because OTI doesn’t want you
finding out their secrets (determined Smalltalkers will find
ways to view this code), but because changing these methods
could damage the database. Custom user fields can be associ-
ated with any Envy component if additional state is needed for
some reason. If an organization needs custom capabilities,
adding them to Envy is not much more difficult than adding
them to Smalltalk. An added advantage is the many reusable
classes that can be used royalty-free in your application.

FEATURE COMPARISON

Table 1 shows how some groupware environments compare in
solving basic needs of the Smalltalk development team, along
with the platforms supported by each. Not all are currently
available; we listed those we know about to contrast different
capabilities and demonstrate the growth in the genre.

Ad hoc refers to individuals working in separate images,
filing out bits of code. This is, unfortunately, how a lot of team
Smalltalk is still written.

Change set refers in general to techniques that exploit the
Smalltalk-80 change set mechanism. Tektronix developed
browser support for multiple change sets; Knowledge Systems
Corporation later refined the concept and marketed change
set tools.

Team tools, developed for internal use at Tektronix, com-
bined change set tools with configuration management, method
revision history, and limited merging. Team tools used UNIX
RCS to implement-check-in, check-out concurrency control.

Instantiations enhanced and extended the team tools con-
cepts to produce a product called Application Organizer. Dig-
italk has since acquired Instantiations; the future of former In-
stantiations products is unclear.

AM/ST is a Coopers & Lybrand product currently available
for Smalltalk/V only. AM/ST was reviewed in THE SMALLTALK
RepPorT, March/April 1992.

ODBMS
The Objectoriented Database

O Persistent Object Storage for Smalltalk
O Handles Complex Data Types
0 Object Ownership, Versioning, Security,
and Object Distribution
o1 Programmer and Enduser Versions
o Stand Alone or Network Configuration
O Database Classes licensed for
OEM Distribution
3 Licenses for Educational Purposes

Add-on Applications
O Distributed Smalltalk Software
Development Environment

0 SQL-Interface for OS/2

ODBMS
Objectoriented Technology by
VC Software Construction

USA.PuwerMuka:ua Inc, 101 Slongh Road, Harvard MA 01451, Tek
508-456-8302, Fax 263-0696 o i

<> VC Software Construction GmbH,
Petritorwall 28, 3300 Brunachweig, Germany, Tel: +49-531-24 24 00, Fax
449-531-24 24 0-24

OCTOBER 1992




B PRODUCT REVIEW

WHO CAN BENEFIT

Not every Smalltalk development team needs a groupware
product as powerful as Envy. In particular, teams of up to
three people working in the same physical location can get
by with ad hoc methods. Corporations with multiple two-
to three-person Smalltalk projects can choose to “roll their
own,” and develop and maintain groupware based on
change sets or other file-outs and RCS or SCCS. However,
these methods break down as the number of team members
climbs above three or multiple teams need to share com-
pany-wide reusable components.

Envy really shines for managing large projects with dozens
of developers. By spreading project responsibility over three
distinct levels (configuration, application-subapplication, and
class), managers can control a large project with precision.
Since subapplications can be nested, project responsibility can
be further divided to an arbitrary level.

Envy has special abilities—as well as an established track
record—in developing embedded systems. Anyone wishing to
run Smalltalk from anything except a graphical workstation
should consider Envy the only solution at this time.

Envy eases parallel development with its merging and
differencing capability. Very few projects have the luxury of
never needing to split the development path, perhaps for an
important demo or due to geographical distance, It is never
fun merging diverged code, but Envy makes it much easier.

In short, if you have between roughly 4 and 40 Smalltalk
developers on a single project, you can benefit from Envy. The
larger the team, the greater the benefit. As the project leader of

Table |. Comparison of groupware environments.

a successful commercial product using embedded Smalltalk
and about two dozen developers put it, “We could not have
done it without Envy!”

IMPROVEMENT OPPORTUNITIES

Envy has a solid, industrial-strength feel to it. When something
unexpected happens, you tend to question yourself, rather
than Envy. It is truly a product without glaring deficiencies; in
this case, “improvement opportunities” is not just a eu-
phemism for bug fixes! There are, however, some areas in
which OTI should concentrate future development, These are
listed in what we believe to be order of importance.

Multiple libraries

While Envy nicely satisfies an unprecedented groupware popu-
lation of up to several dozen developers working in a single li-
brary, it begins to show stress as that number is pushed above
50 or so, or if the organization wants a multi-library architec-
ture. The needs of a corporate-wide code repository are funda-
mentally different from those of groupware development: ease
of finding and browsing functional units predominate. While
Envy has export/import ability between libraries, it would be an
advantage to be able to access at least a descriptive comment
about applications in other libraries prior to importing them.

Renaming and deletion

Renaming is not supported, so you cannot correct mistakes as

silly as misspelling an application name. Nor can you delete a

version, such as one called OBSOLETE! DO NOT USE! (How-
ever, knowing their mistakes will

continue to embarrass them

tends to make developers more

PM: Smalitalk V/PM clg: configuralion management

Win: Smalltalk V/Windows doc: documentation support
O feature is not supporied

@ fealure is supported

@ “check with system” available standard with Smalltalk—80

@ profiling standard with Smalltalk—80

© Binary Object Storage Servica available for Objectworks Smalltalk—80

@ code sharing only at the application level

@ code sharing of configurations, applications, subapplications, classes, and methods

@ “oft-line” conflicl detection possible after load of conflicting code; no dependency meachanism
© code sharing and configuration in arbitrary units as decided by developer, with no concurrency control
@ code sharing and configuration in arbitrary units as decided by developer, using Unix RCS

Platforms Features careful!) Envy needs a carefully
System | 80 |286 | Mac [PM[Win |int |share |hist |cfg |doc |diff |perf |DLL|obj controlled renaming and dele-
adhoc | @ | @ | @o|@e|e@e]|o| @ [of[o]|]o|[0]e]|o]e tion facility.
ggtange [ J @] o o O @ [/} O [} o O ] o o) User interface
team elololololae @ el e|lo|lelel|lolo Just as climbing a hill reveals the
tools mountain behind, user interface
ovect | @ [0 o ]o]o]e P e |l ole|le|le|lole advances bring out issues that
Master other less capable tools have yet
AMST |O|O| @@ @ ]a o DQ|l]o|lejOoje]|]e|O to conceive. Error avoidance in
| Envy e|e|Oo|e|e]e () o | o | o |eo|e|e]e Envy is wonderful, but with it
80: Smallialk—80 Int: dependencies, detacting conllicts  diff: differencing & merging comes the responsibility of in-
286: Smalltalik/V-286 share: code sharing, concurrency  perf: performance tuning forming the user what is happen-
Mac: Smalltalk V/Mac hist: revision history DLL: link library generalion ing. New users suffer what we call

obj: abject storage facility the “gray blues"—wanting des-
- perately to perform some menu
item, but being frustrated because
the menu item is grayed out (dis-
abled). Context-sensitive help
would be a desirable addition.
The need to support so much
functionality combined with the

need to support multiple plat-

10

THE SMALLTALK REPORT



forms creates multiple browsers that differ significantly from
the Smalltalk vendor-supplied browsers. (Smalltalk/V users
complain about the “Smalltalk-80-like browsers,” and
Smalltalk-80 users complain about the “Smalltalk/V-like
browsers,” but they are both complaining about the same
browsers!) We can’t offer easy solutions, but keeping closer to
native browsers would help.

Peer review

An important aspect of successful large projects is peer review.
Since browsing others’ code is so easy, we experimented with
using Envy for code review, as have others (see “Implementing
Peer Code Reviews In Smalltalk,” S. Sridhar, THE SMALLTALK
Reporr, July/August 1992), by making annotations in place.
Although it works fairly well with no deliberate support, its
usefulness could increase if more attention were given to peer
review. For instance, automatic notification that a review had
taken place, release controls until review conditions are met,
and easy feedback to reviewers,

Documentation

The Envy manual is accurate and concise, but it is only a ref-
erence manual. The menu item in each pane of each browser
is described in turn, but there is no user-centered, task-based

description of the development process. Desperately needed
are a tutorial and a “cookbook” of “how do I.. . .” questions
and answers.

CONCLUSION

Smalltalk groupware has had a long struggling childhood. The
recent availability of several products designed to foster group-
ware ushered in a gangly, clumsy adolescence, with bits miss-
ing here and bugs hiding there. Envy brings Smalltalk group-
ware into adulthood, with a complete feature set that fulfills
today’s groupware needs and the stability expected of a mature
product. Any team of Smalltalkers working on a common pro-
ject should consider it a leading candidate for solving most
programming problems.

Jan Steinman and Barbara Yates are partners in Bytesmiths, a tech-
nical services company specializing in object-oriented design, imple-
mentation, and training. Jan has worked with Bytesmiths’ clients to
create windowless (“headless”) Smalltalk servers using Envy and has
conducted evaluations of Smalltalk groupware products for clients.
Barbara teaches Envy training classes for Bytesmiths’ clients and has
assisted numerous teams in conversion to Envy. Together, Jan and
Barbara have worked with over 80 Envy users and an equal number
of other Smalltalk groupware environment users.

OBJECT VISIBILITY continued from page 4

STORE FACTS IN ONE PLACE

If the same objects are used in a number of methods, hold on
to this shared information in the object’s class. Class methods
can be easily designed to yield this default information. It is a
matter of style whether these objects should be returned from
class methods or stored in class variables. From an instance’s
perspective, maintenance of this constant information is an
appropriate responsibility of its class, regardless of how it is
accomplished. This eliminates sprinkling the same literal ob-
jects over a number of instance methods. If a literal value
needs to be modifted, the programmer only has to make the
change in one place.

Work at reducing the number of objects that a class de-
pends on. Direct reference to any global objects is considered
harmful by many Smalltalkers. Code with “hard-wired” refer-
ences to other objects is fragile and highly dependent on cor-
rect context being established before it can run. It is difficult to
reuse code containing global references in another context. To
be reused, code must either be reworked to remove direct
global references or scaffolding code must be executed to set
up the necessary global context.

LIMIT DEPENDENCIES ON OBJECT STRUCTURE
Sending messages to self is a valuable implementation tech-
nique for two reasons: It allows programmers to separate de-
tailed steps from main parts of an algorithm, and clearly
identifies steps in an algorithm that can performed differently
by a subclass method.

Just as important, sending accessing messages to self al-
lows code to be insulated from changes in instance variable
structure. It also allows subclass developers to override those
accessing methods and provide the necessary information in
another way.

DEVELOP A SENSE OF STYLE

Don’t try to use every language construct when translating
design-level collaborations into a Smalltalk implementation.
Current Smalltalk environments have too many ways, for my
taste, to make objects visible. Teams should develop and stick
to a style guide that addresses when and how to use particular
Smalltalk constructs and how to simplify collaboration pat-
terns. Smalltalk programming style is an art and different or-
ganizations quite naturally develop their own styles. It is im-
portant to cultivate a sense of style and create some coding
guidelines before translating a design into code.

Rebecca Wirfs-Brock is Director of Object Technology Services at
Digitalk, co-author of Designing Object-Oriented Sofiware, and
program chair for OOPSLA *92. She has 17 years’ experience de-
signing, implementing, and managing software products. For the
last eight years she has focused on object-oriented software, includ-
ing managing the development of Tektronix Color Smalltalk and
developing, teaching, and lecturing on object-oriented software.
Comments, further insights, or wild speculations are greatly appre-
ciated by the author. Rebecca can be reached via email at re-
becca®@digitalk.com. Her U.S. mail address is Digitalk, 921
S.W.Washington, Suite 312, Portland, Oregon 97205.

OCTOBER 1992

11



Uls

Greg Hendley and Eric Smith

Separating the GUI from
the application, Part 2

we presented an application architecture for separating the

host-GUI-dependent, presentation-dominant parts of an
application from the control and semantic portions. In brief,
the ICM architecture divided interactive applications into
three primary components: (1) the interface component, re-
sponsible for all aspects of input handling and output presen-
tation that directly involve host GUI features; (2) the control
layer, the actual intelligence, which carries out commands,
maintains selections, keeps track of operational validity, etc.;
and (3) the domain model layer, comprised of all the objects
representing the information with which the user is working.

We pointed out several advantages deriving from the use of

this architecture. Chiefly, ICM applications are very easily
ported to different platforms. Second, maintenance is eased
because less volatile sections of code are insulated from more
volatile ones like the interface. Finally, project maintenance is
facilitated because the work of application developers and user
interface specialists is more clearly delineated.

In a recent column (THE SMALLTALK REPORT, May 1992)

SCALING UP

The example code we previously provided implemented a sim-
ple log-on dialog. Although it illustrated the concepts of ICM,
it was much too simple to be a useful guide to implementing
an entire application. We will try to make up for this by cover-
ing in some detail a few of the problem areas that arise when
one first attempts to construct an ICM application.

GUIDING THE USER

In any reasonably modern GUI-based application, end users
are likely to expect menu selections and push buttons that rep-
resent currently invalid operations to be disabled or grayed
out. Under the ICM model, implementing this behavior in-
volves both the interface and the control components.

The control part of the application knows what each com-
mand’s prerequisite conditions are. If well designed, it knows
immediately when any given command has become invalid.
However, it has no knowledge of what type of user interface el-
ement presents the command as an option to the end user. It is
possible that the current interface does not present the com-
mand at all. Therefore, the control must pass on to the inter-
face a request to disable whatever interface element, if any, it
uses to present the command in question.

For example, assume that the interface has two buttons A
and B, which represent the control commands cmdA and cmdB,
respectively. Further assume that when one is pressed, the
other becomes invalid. In Smalltalk/V PM, this would result in
the code segment shown below.

INTERFACE CODE
The following four methods are instance methods of some
subclass of ViewManager.
beA: aPane
"The end user pressed button 'A"."
self control cmdA
beB: aPane
"The end user pressed button 'B'."
self control cmdB
disableCmdA "Command A is no longer a valid option."
(self paneNamed: 'buttonA')
disable disableCmdB "Command B is no longer a valid opton."
(self paneNamed: ‘buttonB') disable

CONTROL CODE
The following two methods are instance methods of the class
that defines the control for the interface.

cmdA
"The end user has chosen command A."
"Do whatever needs done to the domain model here."
"Command B is no longer an option."
self userInterface disableComandB
cmdB "The end user has chosen command B."
"Do whatever needs done to the domain model here,"
"Command A is no longer an option."
self userInterface disableComandA

This may seem like quite a few methods just to accomplish a
simple task. However, there are many advantages to this ap-
proach. First, if the user interface experts later decide that these
commands should be represented both with buttons and menus,
only the interface layer would need to change. Each of the disable
messages would then disable both a button and a menu option.
The control layer would remain unchanged, unaware of whether
it is disabling a button, a button and a menu selection, or noth-
ing at all as a result of sending the message to the user interface.

Another advantage is that portability has been maintained.
Should the application be moved to another platform that uses
a different protocol for disabling user interface elements, then

12

THE SMALLTALK REPORT



CALENDAR

November 16-20
C++ World
Meadowiands Hilton, N
2122749135

February 1-4, 1993
Object World (OMG)
Boston, MA

800.225.4698

February 1-4 and
February 4-5, 1993
OOP‘93 and C++ World
Munich, Germany

2122749135

February 21-26, 1993
Software Development ‘93
San Jose, CA

4159052741

March 8-11, 1993
XWorld

New York, NY
212.274.9135

March 8-12, 1993
INTEROP
Washington, DC
800.INTEROP

Transitioning to Smalltalk technology?
Introducing Smalltalk to your organization?

Travel with the team that knows the way ...

The Object People

“Your Smalltalk Experts”

all that must be reimplemented is the interface layer. There is
no need to comb through the control code looking for proto-
col that depended on the old host GUI.

QUICK POP-UPS

A small but tempting violation of the separation between the
platform specific interface and the portable control occurs
when very small amounts of additional information are re-
quired when carrying out a command. A user may need to ob-
tain a file name or confirm an unexpected or extreme conse-
quence. In that case, the quickest solution is to have the control
ask the user directly. For example:

cmdA
"The end user has chosen command A."
| fileName |
fileName := Prompter prompt: 'Enter a file name' default: 'file_dat'.
"Do whatever needs done to the domain model here."
"Command B is no longer an option."
self userInterface disableComandB

However, this presents several difficulties. By referring directly
to the class Prompter, platform-specific information is woven into
the application control and cross platform portability is compro-
mised. Second, if the user interface designers decide to use some
dialog other than the prompter to obtain file names, then all of
the control layer must be examined for expressions such as those
above. Finally, the user interface may have already obtained a file
name from the user, which was entered in a text entry field in the
window from which this command was initiated. The control
code does not and should not know which is the case.

Although tedious, the best solution is to go to the user in-

terface to accomplish all tasks. The control should send a re-
quest to the user interface to obtain the file name by any means
and return it. The following two methods illustrate this.

Interface code

getFileName

"Sent by the application control.
Answer a file name or nil if one is unavailable."

| aFileName |

aFileName ;= Prompter prompt: 'File:' default: 'FILE.DAT'.

(aFileName isNil or: [aFileName trimBlanks isEmpty])
ifTrue: [* nil].

~ aFileName trimBlanks

Control code

cmdA
"The end user has chosen command A."
| aFileName |
aFileName := self userInterface getFileName,
"Do whatever needs done to the domain model here."
"Command B is no longer an option."
self userInterface disableComandB

This problem worsens when an untoward event discovered
deep within the domain model—the worst possible place to di-
rectly involve platform-specific classes—requires a confirmer
or quick dialog. The best solution is to use some kind of excep-
tion handler so that the domain model code can notify the
control code of the unexpected problem. The application con-
trol assisted by the user interface can help manage the neces-
sary interaction with the end user.

OCTOBER 1992

13



TO SUBSCRIBE TO

The Smalitalk Report,

cCAaLL 212/274-0640 OR
FAX YOUR REQUEST TO 212/274-0646

SUBORDINATE APPLICATIONS

It is problematic to mix interface and control code when a sec-
ondary application is opened as a result of a user comrnand. The
application control recognizes the need to open a new window
but knowledge about the protocol used to open new windows,
and the classes that represent them, is interface- and platform-
specific and should not be included in the control layer. The fol-
lowing method in the control layer violates the ICM architecture.

cmdBrowseDocument
"The end user wants to open a browser on the selected document."
SomeKindOfViewManager new
openOn: self selectedDocument

This method causes many of the same difficulties as direct
reference to class Prompter in the first example above. The de-
cision as to which interface should be used in browsing docu-
ments is moved out of the interface layer. Further, this type of
reference, from the control layer to a class in the interface layer,
introduces a complication when porting the application to a
new platform. When there are no direct references to classes in
the interface layer in either of the model or control layers, these
lower two layers can be easily ported to a new platform and a
new interface layer built on top of them. Methods like the one
above will introduce unresolved references when ported with-
out the interface layer. These will have to be carefully located
and resolved when the new interface is constructed.

Once again, the correct method for handling this sort of
problem is to pass the problem back to the user interface in a
manner similar to that used for prompters and confirmers.
This might result in the following set of methods.

Interface code

mcBrowseDocument
"The end-user has chosen the Browse Document menu option."
self control cmdBrowseDocument
createDocumentBrowserOn: aFile
"Open a document browser application on the arqument."
self documentBrowserClass new openOn: aFile
documentBrowserClass
"Answer the class which defines the preferred document browser
interface."
~ SomeKind OfViewManager

Control code

cmdBrowseDocument
"The end user has chosen command A."
self userInterface
createDocumentBrowserOn: self selectedDocument

Again, this might seem an excessive number of messages
back and forth between the interface and control portions of

B SEPARATING THE GUI FROM THE APPLICATION, PART 2

the applications, when one could simply ask the control for
the selected document and open the correct kind of browser
from the mcBrowseDocument method. However, as the ap-
plication grows in complexity, the question to browse, or ex-
actly which document to browse, may become quite compli-
cated. Such a decision will involve numerous factors of
which only the control layer is aware. If the interface has
short-circuited the control’s responsibilities the command
will behave incorrectly.

OTHER PROBLEMS

As we move up the scale to more sophisticated applications
with increasingly rich interfaces, nastier problems begin to
crop up. Handling errors and exceptions can prove especially
difficult. This can involve sudden invalidation of assumptions
made by both the interface and control layers, The designer of
the control must be able to provide the user interface layer
with notification of any exceptional conditions. The interface
must be able to present the end user with useful, non-confus-
ing information regarding the situation. This task is especially
difficult without a good exception-handling mechanism.

The separation of presentation and control is most difficult
to maintain when the presentation of the underlying domain
model to the end user is highly graphical in nature. The most
convenient implementation in such cases is to design the
model objects so that they know how to draw themselves on
some graphic medium. However, this involves burying plat-
form-specific code all the way down in the domain model.

In our experience, there are several plans of attack for solv-
ing these problems. Not all of them are entirely satisfying, espe-
cially in the case of exception handling. As solutions for these
situations evolve, we will include them in future columns.

FOR FURTHER READING

Many of the ideas on which ICM architecture is based, particu-
larly the strong separation of presentation and control, grew
out of the work of the Dialog Management System group at
Virginia Tech in the late 1980s. For interested readers the fol-
lowing references are provided:

Hartson, H. R., Control and communication in user interface man-
agement, Technical Report TR 88-3, Department of Computer Sci-
ence, Virginia Polytechnic Institute and State University.

Hartson, H., R. Johnson, D. Hix, and R.W. Ehrich, A human-
computer dialogue management system, PROCEEDINGS OF
INTERACT ’84, London, England: IFIP, Vol. 1, pp. 57-61.

Yunten, T. and H.R. Hartson, A SUPERvisory methodology and no-

tation for human-computer system development, Abvances i~y Hu-
MAN-COMPUTER INTERACTION, H. Rex Hartson, editor, Ablex, 1985.

Greg Hendley and Eric Smith are both technical staff members at
Knowledge Systems Corp. Greg Hendley’s OOP experience is in
Smalltalk/V (DOS), Smalltalk-80 2.5, Objectworks Smalltalk Re-
lease 4, and Smalltalk/V PM. Eric Smith’s specialty is custom graphi-
cal user interface using Smalltalk (various dialects) and C. The au-
thors may be contacted at Knowledge Systems Corp, 114 MacKenan
Drive, Suite 100, Cary, NC 27511, or at Compuserve 72000,1056.

14

THE SMALLTALK REPORT



MALLTALK IDIOMS

Collection idioms

tions feature is universally regarded as saving the most

programmer time. The Smalltalk collection hierarchy
has been widely copied by many, including the popular Na-
tional Institute of Health class library for C++. Along with num-
bers, collections share the distinction of being the most portable
class among the three major Smalltalk implementations: Ob-
jectworks\Smalltalk, Smalltalk/V (all flavors), and Enfin/3.

Once I started talking to my friends about how they use col-
lections I realized I had enough material for two idiom
columns. Most Smalltalk programmers don’t take full advan-
tage of collection’s features, but the more experienced have a
bag of tricks (some of which are not obvious at first glance)
with everything collections have to offer. These programmers
also know where the traps lie and how to avoid them.

The remainder of this column takes you through the perils
of subclassing collections and some of the richness of the col-
lection protocol. Next month we’ll take a brief tour of the most
common classes, how they are implemented, and when they

should be used.

Compared with procedural languages, Smalltall’s collec-

SUBCLASSING COLLECTIONS
My aesthetic sensibilities are always offended when someone
creates a subclass of a collection class just because the object
being created includes a collection. The most obvious example
of this kind of subclassing is SystemDictionary. Until I started
writing this column I never had a solid engineering explana-
tion for my reaction. Now I think I can explain.

Unfortunately, subclassing a collection is one of the first
ideas that comes to mind when you finally understand inheri-
tance. “Oh, I need a polygon. I'll just subclass OrderedCollec-
tion. That way I'll get all the adding behavior for free.” Lo and
behold, you can add and remove points from a polygon as
soon as you define the class. Pretty neat, this Smalltalk stuff.

It's not until later that the danger of subclassing a collec-
tion becomes apparent. While there may be a couple of mes-
sages that make perfect sense for your new class, others don’t
make sense and still others are actually harmful. I confirmed
this by executing Smalltalk removeKey: #0bject in Objectworks\
Smalltalk. Away went class Object, never to return. Smalltalk/V
Mac asks for confirmation that you want to delete the class,
but there are other messages just as harmful that no one
thought to protect.

By subclassing to gain a collection you have opened up an

Kent Beck

enormous window onto the implementation of your object, vi-
olating its encapsulation and potentially opening it up to
harmful messages. You can protect your class by overriding the
offending methods with self shouldNotImplement. By the time
you are done, though, you will have a class that gainfully inher-
its a couple of messages while explicitly eliminating a dozen
others. Even so, you are still vulnerable to someone coming in
later and adding a method to the superclass that re-exposes
your subclass. At that point you may as well have inherited
from Object, added an instance variable for the collection, and
forwarded the messages you cared about to the collection.

Back in the olden days, there were few gratuitous subclasses
of collections. Objectworks\Smalltalk 4.1 has a half dozen classes
that inherit from a collection, but don’t otherwise act like collec-
tions. In its defense, UninterpretedBytes (more of which later) is a
subclass of Object even though it is implemented as a collection
of numbers. In looking at the V image I see only CompiledMethod
and Process as collection subclasses that don’t really belong
(both of these classes are done “right” in OW\ST).

This perspective on subclassing collections runs counter to
my usual advice on using inheritance. I am a firm believer that
inheritance does share implementation, and that’s what it should
be used for. Rather than read inheritance as “is-a” or “is-kind-
of,” I read it as “is-implemented-like.” This explanation of in-
heritance is simple for beginners to grasp. It admits a simple
metric for evaluating inheritance decisions, such as which alter-
native allows the most code sharing. Beginners can flounder for
months trying to understand “inheritance as abstract specifica-
tion” (a la contracts) or “inheritance as classification” (a la Al).

I don’t have a glib response to this apparent inconsistency.
Perhaps the reason collections are not good to inherit from is
that they have so much behavior at the abstract level. Any sub-
class that isn’t really a new kind of collection is bound to find
many of those methods inappropriate. Perhaps collections
have too much behavior and a different factoring of the system
would yield a more satisfying answer. I do know that subclass-
ing to share implementation usually works, but that collections
are a notable exception to that rule.

INDEXABLE SUBCLASS

While I'm on the subject of subclassing and collections let me
mention a life-saving facility I have had occasion to use once
or twice. Let’s say you followed the above advice and made
your objects subclasses of Object and gave each one an instance

OCTOBER 1992

15



B SMALLTALK IDIOMS

variable that holds onto a collection. If the objects are small
and numerous, the overhead of the additional object (usually
12 bytes of object header and 4 bytes in the referencing object)
can add up. If the collection is simple (an Amay, for instance)
you can eliminate the space overhead and improve the locality
of reference by declaring your object to be an indexable sub-
class. This will add a number of indexed instance variables (the
number is set at instance creation time in the argument to
new:) to your object. The conversion will be made much easier
if you were careful to use collectionAt: and collectionAt:put: to
access the collection. You can convert:

collectionAt: anInteger
~collection at: anInteger

to:

collectionAt: anInteger
~self at: anInteger

and so on.

COLLECTION MESSAGES

Collection implements a variety of behavior for its subclasses.
It is a triumph of object design that all of that functionality de-
pends only on the existence of three methods in a subclass: do:,
add:, and remove:ifAbsent:. When implementing new kinds of
collections, I have been amazed at how quickly I can get going
just by implementing those three methods.

ENUMERATION
Of the behavior implemented in Collection, the enumeration
methods are the most powerful and hardest to understand.
The methods are interesting because they are safe to use: None
of them modify the collection they iterate over. The ones that
return a collection always allocate a new object for the result.
I'll go through the messages, describing what each one does,
how it is implemented, and when you might want to use it.

do:

Do: executes a block for each element in a collection. It oper-
ates strictly through side effects and the results of evaluating
the block are discarded. Do: must be redefined in each new
subclass of Collection.

I went through all senders of do: in the Smalltalk/V Mac 1.2
image and I couldn’t find any clever idioms. I was surprised at
how often it was used when one of the other messages would
have served better. Interestingly, the times do: was used incor-
rectly were primarily when a temporary variable was experi-
encing side effects. If an argument or instance variable was
changed the use of do: was usually correct. As a positive exam-
ple, look at Collection>>printOn:

printOn: aStream
aStream nextPutAll: self class name.
aStream nextPut: $(.
self do: [:each | aStream print: each; space].
aStream nextPut: $)

collect:

Instead of just executing code for its side effects, perhaps you
want to transform all the elements of a collection. Collect: exe-
cutes a block for each element, but saves the results and re-
turns them when done. For example, if you want to return the
absolute values of a collection of numbers you could write:

absolute: aCollection
| Tesult |
result := aCollection species new: aCollection size.
1 to: aCollection size do: [:each |
result at: each put: (aCollection at: each) abs].
~result

or you could just write:

absolute: aCollection
~aCollection collect: [:each | each abs]

Collect: and the following messages all have the admirable
property of removing the need for temporary variables when
they are used. Methods often shrink by several lines when you
find a way to use one of the enumeration messages.

Another big advantage of enumeration messages is that they
are not sensitive to the kind of collection they operate on. The
first version of absolute: above assumes that aCollection is in-
dexable by integers (responds to at: and at:put: with an integer
first argument). If I decided later that the parameter to abso-
lute: could also be a Set, which isn’t indexable, I would have to
change absolute: to deal with both cases. Since all collections
respond to collect:, by using it instead ] am completely insu-
lated from changes in what kind of Collection is passed in .

Here is another example where collect: is useful. I often
make the mistake of converting objects several places within a
single class. For instance, I might write:

foo
strings do: [zeach | each asSymbol ... ]

Then I might convert strings to symbols in several other
loops in other methods. The object in question isn’t taking
enough responsibility. It should provide the service of convert-
ing its strings to symbols:

stringsAsSymbols
~strings collect: [:each | each asSymbol]

Then I can write:

foo
self stringsAsSymbols do: [:each | ...]

What advantages does this approach provide? First, it’s more
modular. If I want to stop storing strings and store something
else (or compute it on the fly) I can just change stringsAsSymbols
and not have to touch every method where the instance variable
strings was used. Second, if converting strings to symbols is a
performance problem I may never see it if it’s buried in half a
dozen methods. Putting it in a single method makes the perfor-
mance implications clear and provides a simple way of imple-
menting caching should that become necessary.

16

THE SMALLTALK REPORT



ETTING REAL

Juanita Ewing

The dangers of storing objects

representations of composite objects to disk. Early

Smalltalk systems could not deal with objects containing
circular references, so the capability of storing objects was not
widely used. Now that many kinds of objects can be written,
other issues have arisen: When is it appropriate to use this
mechanism? Is this a good way to provide long-term storage of
objects? Can this capability be overused or misused?

Object storage was first implemented for Tektronix
Smalltalk by Steve Vegdahl.! In Smalltalk/V this capability is
called Object Filing. In Objectworks\Smalltalk, this capability
is implemented by BOSS (Binary Object Streaming Service).

In all these implementations, an encoded representation of
an object is written to a file. The representation of the object
consists of structural information required to recreate the ob-
ject from the data in the file. Objects recreated from the data
on disk are not the same as the original object. These systems
do not maintain object identity across read/write operations
and are therefore not persistent object systems.

S malltalk systems now include the ability to correctly write

WHAT IS WRITTEN TO DISK?

When the representation of an object is written to disk, it must
include all the data necessary to recreate the object. The class
name is written to designate the class of object to be recreated.
Each component of the object, numbered slots and instance
variables, is written. If the component is a reference to another
object, that object is also written.

Each implementation has different restrictions on precisely
which objects are written. The values of global variables such
as Transcript are not written. Instead, a reference to the vari-
able’s name is stored and when the object is recreated its refer-
ence is bound to the current value of the identifier.

The representation of an object in these systems is the data
from the private internal implementation of the object. The
public interface to an object is not used to recreate the object.
Private, low-level methods are used instead.

WHY DO DEVELOPERS WRITE/

RECREATE OBJECTS?

The big advantage of object storage systems is that they permit
a Smalltalk developer to externalize objects without designing a
special file format or writing input/output methods. Developers
might use object storage systems to “transfer” objects from one
image to another. Other members of a development team

might need an object that is difficult or time consuming to
recreate. A prototype might have objects built by hand instead
of programatically or objects might be created from a data feed.

Developers sometimes use this ability to “save” objects; they
want the objects to exist longer than an image. Another use is
to reduce the size of an application image by building an exter-
nal “database” of stored objects. Then only the objects that are
actually being used need to be loaded.

SOPHISTICATED USE
An application I helped develop had visual components that
were used off-screen to generate a composite graphic. This
graphic was stored in an instance variable, but we didn’t want
it saved when we wrote our objects to disk. It was large and
took more time to read from disk than to recreate. We needed
a way to control which components of an object are written.
Both Object Filer and BOSS have a mechanism to cus-
tomize what is written on a per class basis.

» With Object Filer, you implement a method with the selector
fileOutSurrogate:, which returns a surrogate object to be writ-
ten to disk in place of the receiver. The surrogate can be a
copy of the original object with modified instance variables.

« With BOSS, you implement a method with the selector rep-
resentBinaryOn:, which uses other BOSS methods to write
the representation of the object to a stream.

Sophisticated use of these systems requires developers to
write special methods that modify the written representa-
tion of the object, usually by changing the private instance
state of the stored object. The manner in which these sys-
tems are customnized is an indication of the limitations of
these systems; they manage the storage of an object at the
structural level.

DANGERS
Class definitions are volatile. Instance variables, class variables,
and pool dictionaries can be added or deleted. Once a change
is made to the private implementation of an object, such as
adding an instance variable, the written representation on disk
is no longer accurate. Because the representation consists of
private implementation data, the public interface of that object
is not used to recreate the object.

Problems arise from: renaming a class; changing represen-
tations; restructuring a class; and refactoring a hierarchy.

OCTOBER 1992

19



N GETTING REAL

Most of these systems have mechanisms to handle simple
variations in an object’s definition. In the case of added and
deleted instance variables, Object Filer brings up a graphical
interface that interactively lets you map instance variables on
disk to the instance variables in your image. This mechanism is
particularly useful when instance variables have been renamed.
Object Filer also has a mechanism to support classes that have
been renamed.

CHANGING REPRESENTATIONS
Suppose a composite object consists of a deeply nested tree
structure. When this object is written to disk, a representation
of it and all its composite objects is written. Later, the develop-
ers add a cache of recently accessed leaf node to the object.
This cache, an instance of OrderedCollection, is stored in an ad-
ditional instance variable. The representation of the object on
disk does not specify a value for the cache instance variable.
When the object is recreated, it has a nil value for the cache.

The methods in the composite object must be specially de-
signed to accommodate a value of nil for the cache. Accessing
methods for the cache must check for nil instead of assuming
an instance of OrderedCollection and, if necessary, create an in-
stance of OrderedCollection. The developers then save some
composite objects to disk

Later the cache is changed to be an instance of Dictionary.
Accessing methods are again modified to check not only for
nil, but for instances of OrderedCollection; if necessary, the
cache is modified to be an instance of Dictionary. More com-
posite objects are saved to disk.

What is the situation now? The developers now have repre-
sentations of composite objects with the following variations:

* no cache instance variable
= cache instance variable bound to instance of OrderedCollection
» cache instance variable bound to an instance of Dictionary

In this example of changing representations, what you really
have is a mess, with code for backwards compatibility in every
relevant accessing method. The sitnation is even worse if you
don’t use accessing methods and instead directly reference in-
stance variables. You end up with code for backwards compati-
bility in every method that references the instance variable.

The series of modifications I've described is very typical.
The original definition of a class is rarely correct; definitions
are changed to accommodate optimizations as described
above. Functional extensions also require modifications. For
example, an ellipse class describes an elliptical element with a
border width and color. It has instance variables to store the
attributes’ width and color. The developers later add function-
ality for filling the inside area of the ellipse. The class definition
is modified as another instance variable stores the fill color.

REFACTORING AND RESTRUCTURING

The most devastating kind of change is not addition or dele-
tion of instance variables. It is the refactoring and restructuring
of classes into sets of classes, or the combination of several

classes into a single class. As developers create an application,
the design evolves. Responsibilities are redistributed and new
classes are created.

Let’s look at a simple example of restructuring. Suppose your
application records information about people such as their
name, which is an instance of String. Later you decide a single
string is not a good representation and you want to model the
first and last names as two separate entities. If you have stored
objects with the name represented by an instance of String, you
must make extensions to the object storage system to:

* Read the name
* Detect the class

* Potentially parse the string to model first and last names
separately.

An example of refactoring recently discussed in several pub-
lications is from the Objectworks\Smalltalk user interface li-
brary. The class View has been refactored into a number of
smaller classes, each with less functionality. Is it possible to
take a view that has been stored on disk and recreate it in terms
of the new classes? No doubt it would be easier and less time
consuming to rewrite the code used to create the view than to
recreate its equivalent from the object representation on disk.

ALTERNATIVE

It is easier to rewrite code to make a view because rewritten
code uses the public interface to objects. Writing objects to
disk using the private implementation data is okay for a quick
transfer, but not a good idea for any long-term needs.

Object storage systems are very handy for short-term use,
but because of the dynamic nature of classes, they are unsuit-
able for long-term use. These systems encade structural imple-
mentation rather than the semantics of information.

Every major Smalltalk application I know of that used an
object storage system for long-term storage ultimately had to
be modified to use a less implementation-dependent storage
format. A good format captures the data without directly spec-
ifying objects and the values of their instance variables. Instead
it captures relevant data in an object-independent format by
storing only semantic data. Methods that read the data instan-
tiate new objects by sending public messages.

Reference

1. Vegdahl, S.R. Moving structures between Smalltalk images,
Proceepings oF THE ACM CONFERENCE oN OBjECT-ORI-
ENTED PROGRAMMING, SYSTEMS, LANGUAGES AND APPLICA-
TIONS, Portland, OR, September, 1986, pp. 466-471.

Juanita Ewing is a senior staff member of Digitalk Professional Ser-
vices (formerly Instantiations, Inc.). She has been a project leader for
several commercial object-oriented software projects and is an expert
in the design and imlementation of object-oriented applications,
frameworks, and systems. In a previous position at Tektronix Inc.,
she was responsible for the development of the class libraries for the
first commercial-quality Smalltalk-80 system. Her professional activ-
ities include Workshop and Panel Chairs for the annual ACM OOP-
SLA conference.

20

THE SMALLTALK REPORT



HE BEST OF comp.lang.smalltalk

Alan Knight

Some Smalltalk stuff

broad O-O issues. This time we will discuss three de-

tailed, language-specific issues: Smalltalk text, imple-
menting method pre- and postconditions, and determining a
source filename during filein. Although we can’t solve all of the
problems, we will get a better understanding of them.

The last few editions of this column have dealt with very

FORMATTING

There are programs available for formatting or “pretty-
printing” most computer languages. The simpler ones, based
on recognizing simple syntactic cues, often break when con-
fronted with complex syntax or strings with escape sequences.
The more sophisticated a formatter gets, the closer it comes to
actually parsing the language.

ParcPlace Smalltalk has a built-in formatter. Because it is
part of an integrated environment, it can directly use the
parser to do its formatting. This is not necessarily good, as
William Eric Voss (voss@cs.uiuc.edu) describes:

I generally love the ‘format’ item on the CodeView
menu....However, occasionally I encounter a long method
with more than a dozen lines. I would like to place inline
comments in such methods. However, if I then invoke ‘for-
mat’ my comments jump a line or more, often becoming
very misleading as a result.

Could someone clearly explain why this happens?...Does
anyone have a workaround (other than don’t use ‘format’)?

Danny Epstein (dje@scs.carleton.ca) explains:

The ‘format’ command works by parsing the source
code and then pretty-printing the parse tree. When a
comment is read in (by the scanner, if I remember cor-
rectly), it is attached to the ‘current’ parse node. This
isn’t really what is desired since there are several places
in the source code where a comment could go, all of
which would get associated with the same parse node.
Multiple comments are handled, but their positions are
not stored. A better technique would be to associate a
comment with the parse node whose code immediately
precedes it. If there are several, then the largest one
should be used. For example:

x =1+ 2. "comment for statement"”

x =1+ 2 "comment for +".
Note that the second comment is not bound to the 2. The
pretty printer then outputs comments after the code. The
only exception is that comments are never associated with

the entire method. What we call method comments are really
comments on the method header (since they appear after it).
You could change the parser as described above. I can’t
think of a quick hack to fix the problem.

All this being said, I myself never use ‘format’ because I
don’t like its formatting rules. C’est la vie. A good format-
ter should have lots of user options so it can get close to
what the user would do manually.

Unfortunately, this explanation doesn’t provide a solution
or workaround, only an understanding of the source of the
problem. Anybody care to undertake the job of writing a really
good formatter for Smalltalk?

ASSERTIONS
One of the nice things about Smalltalk is its flexibility, its abil-
ity to implement interesting features of other languages. One
worthwhile feature might be assertions, which allow you to
specify the behavior of code in a way that can be checked (as
opposed to comments). Assertions are a staple of formal meth-
ods and an important part of the Eiffel language. It’s easy to do
a trivial version of assertions. We define an Object method:

assert: aZeroArgumentBlock

self assertionCheckingIsOn ifTrue: [

aZeroArgumentBlock value ifFalse: [
self error: 'assertion failed']].

We check some sort of state variable to indicate if assertions
are active; if so, we evaluate the block. An example of using this
method is:

someMethod: aParameter
self doSomeWork: aParameter;

assert: [alreadyProcessedList includes: aParameter].
~self.

This verifies that the parameter has been added to the list of
processed items. Although this is useful and provides about the
same level of functionality as the C “assert” macro, it’s not
nearly up to the level of Eiffel assertions, which are built into the
language. Eiffel supports assertions as method preconditions,
postconditions, and class invariants. A precondition specifies the
necessary conditions before a method can execute and is
checked just before execution. A postcondition specifies what
should always be true after the method has finished executing
and is checked just after method execution. A class invariant
specifies something that should always be true for an instance of
a class and is checked every time an operation modifies an in-
stance. We'd like to be able to use these much more useful asser-
tions in Smalltalk. Bernhard Humm (humm@cs.uow.edu_au)
specifies the requiremnents in more detail:

OCTOBER 1992

21



To place a recruitment ad, contact
Helen Newling at 212.274.0640

IT’S TIME
to become a

CONSULTANT

Numerous Immediate Southern California
Consulting Opportunities for

OOP PROFESSIONALS

SMALLTALK

ENFIN

C++; 0S/2 (Heavy Experience)
Other Significant OOP Experience

SOFTWARE MANAGEMENT
CONSULTANTS, Inc.
505 No. Brand Blvd., Suite 660
Glendale, CA 91203

Voice: 818.240.3177

Fax: 818.240.7189
=
I would like to introduce the concept of ASSERTIONS
(e.g., [Meyer 90]) into Smalltalk: pieces of code to be exe-
cuted before (precondition) and after (postcondition) exe-
cution of the method body. I would have thought extend-
ing Smalltalk with this feature would be easy. I defined the
following requirements:
- The definition of the method body is done in exactly the
same way as without using assertions. The semantics of ex-
ecution does not change (including the semantics of a re-
turn statement and a missing return statement).

* Pre- and postconditions are defined in the method defini-
tion (not in separate methods).

* Invoking the method with the assertions does not differ
from invoking the method without assertions (this ensures
that you can add assertions to previously defined messages
without changing other parts of the system).
Example:
plus: aNumber
Agelf
preCondition: [aNumber isOfIype: Integer]
body: [*aNumber + self]
postCondition: [:res| res isOfType Integer]
However, the implementation of preCondition: body: post-
Condition: seems to be difficult. The problem is the seman-
tics of the return statement (which, when encountered, im-
mediately exits the method invocation without any chance
to perform the postcondition).

This clearly defines the previously described problem with the

B THE BEST OF COMP.LANG

assertion mechanism. The return statement apparently makes it
impossible to be sure assertions will be checked anywhere except
the beginning of the method, and even this cannot be guaranteed
if there is a return statement in the assertion block.

Blocks

The reason for the difficulty is the peculiar nature of blocks in
Smalltalk. Blocks are similar, but not quite identical, to func-
tions (in a language where functions are first-class). Blocks can
have local variables (at least in recent ParcPlace implementa-
tions); they can be assigned, passed as parameters, and evalu-
ated. They are also lexically scoped: a block “inherits” the
scope of the method by which it was created.

Blocks and functions differ in the return statement. A re-
turn exits from a function but exits from the method in which
the block was defined. This is necessary because of how
Smalltalk uses blocks, but it can cause difficulties and confu-
sion. Consider the following collection method:

detect: aBlock
self do: [:eachltem |
(aBlock value: eachltem)
ifTrue: [“eachItem]].

In this case, we really want the return to exit from the de-
tect: method rather than either of the enclosing blocks. If state-
ments are written using blocks, a return that only exits the lo-
cal block would make it impossible to write the common
Smalltalk statement:

someCondition
ifTrue: [*something]
ifFalse: [~somethingElse].

On the other hand, consider the case of a complicated sort
block:

someMethod
| sortBlock collection |
sortBlock := [:thing1 :thing2 |
thing1 condition1 ifTrue: [*true].
thing1 condition2 ifTrue: [*true].
(thing1 condition3 and: [thing? condition1])
ifTrue: [“true].
“alse].
collection := SortedCollection sortBlock: sortBlock.
Acollection.

If blocks were really functions this would return a SortedCollec-
tion using this peculiar sorting condition. Instead, it returns a col-
lection that repotts an error as soon as an item is inserted. Specifi-
cally, someMethod returns the local collection. If we then say:

collection add: anObject.
the same invocation of someMethod tries to return again,
causing a very confusing walkback. The very idea of a function
invocation returning twice is bizarre.

Different semantics don’t cause a serious problem in this
case, which is easy to work around. We can implement a
method to do the comparison, or it can be written using nested
ifs or a case statement. Complex code inside blocks present one
reason | find the lack of any kind of case statement in Smalltalk
irritating enough to write my own. These semantics cause
more difficulty for assertions.

22

THE SMALLTALK REPORT



Back to assertions
One way of handling the problem would be to define two sepa-
rate kinds of return operations, one restricted to blocks. This
would do the job but is a lot of work, a substantial change to
the language, and hardly fits the description of Smalltalk as be-
ing flexible enough to easily implement language features.
Fortunately, at least in ParcPlace Smalltalk, there is an
easier way, which Mario Wolczko (mario@cs.man.ac.uk)
describes:

In Smalltalk-80, since version 2.4, you can associate an ‘un-
wind’ block with a method to deal with exactly this situation.
Example:

[f := (Filename named: 'foo") writeStream.

self doSomethingWith: f]

valueNowOrOnUnwindDo: [f close].

Even if the code invoked by doSomethingWith: causes a re-
turn ‘over’ this method, the ‘unwind’ block (argument to
valueNowOrOnUnwindDo:) will be executed, closing the file
cleanly.

Your method will look something like;
preCondition: preBlock body: boedyBlock postCondition:
postBlock
self check: preBlock.
~bodyBlock valueNewOrUnwindDo: [self check: postBlock]

This seems an ideal solution to a very difficult problem. My
only question is whether there might be a substantial perfor-
mance cost associated with using an unwind block.

FINDING FILENAMES
Another question from William Eric Voss (voss@cs.uiuc.edu):

When you have a multiple file goodies package, it is very
common to have a file which looks something like:
| baseDir |
"Change the next line then fileln this file."
baseDir := Filename named:
'/where/this/stuff/lives'.
(baseDir construct: ‘file1.st') fileIn.
(baseDir construct: ‘file2.st") fileIn.
..etc...
‘Less portable implementations use string1, string2 instead
of the construct: method.’
It seems like there should be some way to do away with
that annoying ‘change this’ line. (AFilename requestFile-
name: line is just as bad.)
There should be a method something like
baseDir := Filename whatIAmBeingFiledInFrom.
Something like the C and Shell script standard of setting ARG[0] to
the program’s filename, but for fileins.
Does such a method exist somewhere that I am unaware of?
ifFalse:[ParcPlace please consider this an enhancement
request].

I’'m afraid this is also one of those questions without an easy
answer, but Jan Steinman (steinman@is.morgan.com) has
some good starting points:

Universal Database
OBJECT BRIDGE ™

This developer's tool allows Smalltalk to read and write to:
ORACLE, INGRES, SYBASE, SQL /DS, DB2, RDB, RDBCDD,
dBASEII], Lotus, and Excel.

Intelligent Systems, Inc.

i
¢ 506 N. State Street, Ann Arbor, M 48104 (313) 996-4238 (313) 996-4241 fax

A neat hack that I added to Tek Smalltalk some years ago
was to give the fileln a receiver, which is quite easy to de-
fine as the Stream being filed in from. Then, it becomes a
simple matter of sending messages to ‘self in the fileln,
such as:
(self directory oldFileNamed: 'nextFile') fileIn!
(That’s an old Tek Smalltalk idiom—kids, don’t try this at
home!) I had used this to provide a dependency mecha-
nism, whereby a fileIn could determine if what it needed
was present, and if not, it could go load it!
Now I'm using Envy, and therefore have no need of such
things, and have not tried to do them in PPS Smalltalk. As
a start, look at PeekableStream>>fileIn and try changing:
Object evaluatorClass
evaluate: self nextChunk logged: ...
to:
Object evaluatorClass
evaluate: self nextChunk for: self logged: ...
This will cause “self in the fileIn to refer to the Stream be-
ing read. Then you can do things like:
| baseDir |
baseDir := FileDirectory fullPathFor:
self ioConnection name!
in your fileIn code. Be careful of ‘self if the fileIn code might
not be a file, since “self could be an instance of Peekable-
Stream (which has no ioConnection), or ioConnection might
be an instance of ExternalConnection (which has no name).
Disclaimer: I have not done any of this in PPS Smalltalk!
Browse the Stream classes and FileConnection to discover
other neat things you might do with this mode. Happy
hacking!

Alan Knight is a researcher in the Department of Mechanical and
Aerospace Engineering at Carleton University, Ottawa, Canada,
K1S 5B6. He currently works in ParcPlace Smalltalk on problems re-
lating to finite element analysis, and has worked in most Smalltalk
dialects at one time or another. He can be reached at +1 613 788
2600 x5783, or by e-mail at knight@mrco.carleton.ca.

OCTOBER 1992

23




THE TOP NAME
IN TRAINING IS ON
THE BOTTOM
OF THE BOX.

Where can you find the
best in object-oriented training?

The same place you found
the best in object-oriented
products. At Digitalk, the
creator of Smalltalk/V.

Whether you're launching
a pilot project, modernizing
legacy code, or developing a
large scale application, nobody
else can contribute such inside
expertise. Training, design,
consulting, prototyping,
mentoring, custom engineer-
ing, and project planning. For
Windows, 0S5/2 or Macintosh.
Digitalk does it all.

ONE-STOP SHOPPING.

Only Digitalk offers you a
complete solution. Including
award-winning products, proven
training and our arsenal of
consulting services.

Which you can benefit
from on-site, or at our
training facilities in Oregon.
Either way, you'll learn from a

100% PURE OBJECT TRAINING.

reduce your learning curve,
and you'll meet or exceed

& your project expectations. All

-

DICHTAT KT

staff that literally wrote the
book on object-oriented
design (the internationally
respected “Designing Object
Oriented Software”).

We know objects and
Smalltalk/V inside out, because
we've been developing real-
world applications for years.

The result? You'll absorb
the tips, techniques and
Strategies that immediately
boost your productivity. You'll

in a time frame you may now
think impossible.

IMMEDIATE RESULTS.

Digitalk’s training gives
you practical information and
techniques you can put to
work immediately on your
project. Just ask our clients
like IBM, Bank of America,

_ Progressive Insurance,
Puget Power & Light, U.S.
Sprint, plus many others.
And Digitalk is one of only
eight companies in IBM's
International Alliance for
AD/Cycle—IBM'’s software
development strategy for the
1990’s. For a full description
and schedule of classes, call
(800) 888-6892 x411].

Let the people who put
the power in Smalltalk/V, help
you get the most power out of it

DIGITALK




	By Article Title
	Collection idioms
	Making the necessary connections
	Object Technology's ENVY Developer
	Separating the GUI from the application, Part 2
	Some Smalltalk stuff
	The dangers of storing objects

	By Author Name
	Beck, Kent
	Ewing, Juanita
	Hendley, Greg
	Knight, Alan
	Smith, Eric
	Steinman, Jan
	Wirfs-Brock, Rebecca
	Yates, Barbara

	By Topic
	comp.lang.smalltalk
	Getting Real
	GUIs
	Object Visibility
	Product Review
	Smalltalk Idioms


